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THE CONVERGENCE OF FINITE ELEMENT METHOD
IN SOLVING LINEAR ELASTIC PROBLEMS

Pin Tong and T. H. H. Pian

Massachusetts Institute of Technology

Abstract—This paper presents a theoretical development to show the sufficient conditions that will insure a
finite element displacement analysis to converge to the exact displacement solutions when the size of the elements
are progressively reduced. The order of such convergence is also estimated. The development is in connection
with the three dimensional elasticity problem and the plate bending problem. A study is made to determine the
possible means of evaluating the merits of different stiffness matrices to be used in the finite element analysis.

1. INTRODUCTION

THE various finite element displacement methods for static analysis of solid continuum
have been identified by many authors [1-3] as the application of variational principles in
mechanics in one form or another. A method which is based on assumed continuous and
piecewise differentiable displacement functions is generally considered as an application of
the minimum potential energy principle and the Ritz method. It has been assumed that the
method will yield solutions which are converging to the exact solutions when the sizes of
the finite elements are progressively reduced. However, such a statement is by no means
trivial and, indeed, does not apply if some proper conditions have not been satisfied.

In general, an upper and a lower bound of the solution of the mathematical problem
with positive definite variational functional can be obtained by the hypercircle method [4].
The present study will use a different approach and will give a theoretical account of the
sufficient conditions that will insure the convergence of the numerical solution.* The
theoretical development will also provide a means for estimating the order of convergence.
The problem of three dimensional elasticity is considered first and is followed by a treatment
of plate and shell problems. Finally, a study is made to determine the possible criteria that
can be used to evaluate the merits of different stiffness matrices.

2. THREE DIMENSIONAL ELASTICITY

Let us consider an elastic body of volume Vin equilibrium under external loads as
shown in Fig. 1, bounded by a surface 8V = S,+8S,. S, is the portion of the boundary
surface where surface traction Ty is prescribed and S, is the surface where displacement
u, (continuous) is prescribed. The minimum potential energy theorem [5, 6] says that all of
the admissible displacements (satisfying the prescribed displacement over S,, being con-
tinuous in ¥ and 8V and having piecewise continuous second derivatives in V), the one

* After submission of the paper, the work of S. W. Key, A convergence investigation of the direct stiffness
method, (Ph.D. Thesis. Univ. of Washington 1966) has been brought to the authors” attention. In this work. a
similar idea in the proof of convergence has been used,
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0=y, v,,05)

3V=Su+Sg

FiG. 1. Geometry and notation.

and only one which satisfies the equations of equilibrium
é .
‘é‘;f[czjklgkl] = F mnV (21
N
and the boundary conditions
Cimenv; = (To on S, (2.2
{i = 1,2, 3) is distinguished by a stationary value {(minimum) of potential energy

M = 400+ [ Fasdv— | (T, ds 23
P

T

3D(u) is known as the strain energy and is defined by

D(w) = Dlu, u) 24

where
D(u,u) = j Cijueijen dV (2.5)
v
e = 3w +u;)

u is the admissible displacement vector with components (u,,u,,u3). v; is the direction
cosine of the normal on dV. The summation convention and rectangular cartesian coor-
dinates (x,. x;, x3) are used. C,;, are the elastic constants with

Cijkl = Cjikl = Cklij (2.6)

Ci and F; are assumed to be independent of u; and C,j,e,5e), is assumed to be positive
definite.

Let u be the solution of equation (2.1) and satisfy the prescribed boundary conditions,
it is easy to see that one has

M) = =40+ | Couseut )y 45 27
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at the minimum of I1, and

D(u, U) = (’I})Ovi dS+ J Cijk;emv}-l),- dS_J~ };}vi dV (28)
- Su 4

So

for any & continuous first partial derivatives in V.

Let us divide the region V into small tetrahedrons, or in the case that V is axially sym-
metric, into circular rings of triangular cross-section. Each tetrahedron has a volume of the
order ¢* and a length of the edges of the order ¢. For these tetrahedrons which are partly in
V and partly outside V, we shall make their vertices either on dV or outside V. A typical
tetrahedron is shown in Fig, 2. The position vector of the vertex n is denoted by X,,. To each
vertex n, subsequently called a nodal point, we assign the region D, which is the domain
comprised of all the tetrahedrons with nodal point »n as their vertex.

Rg

Nz

F16. 2. Typical tetrahedral element.

Let £,(x) be given by

Jolx) = @+ by X1 +CupXy +d,,xs (2.9)

in each tetrahedron p with point n as one of its vertices and let it be equal to zero outside
D,. The coefficients a,,. .. d,, in tetrahedron p are determined by requiring that

Sx) =1 atx =X, (2.10)
= ( at other three vertices

fi(x) is evidently continuous in V and subsequently will be called interpolation function.
If the value of u, at point X, is denoted by U, = (Uy,, Us,, Us,), u can be written as

u = u*+0(% 2.11)
(since u has piecewise continuous second derivative), where
u* = }; U, f(x). (2.12)
Substituting into equation (2.3), one can show that

THu) = THu*)+ O(e) (2.13)
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Evidently
Mw*) - (2.14)

as ¢ tends to zero.

Let us replace U,, of equation (2.12) by gq,,, the so-called generalized coordinates, for
those nodal points n which are not on §, and denoted the new displacement function by Q.
Evidently, on S, -

u—Q = ehix) (2.15)

where h(x) is a bounded function. In fact, if u has piecewise continuous first partial derivative
onS,. h(x)is of the order e on S, and if uis zero on S, h(x}is also zeroon §,.

Since
Q) = M{u)+THQ —u)+ D(u, Q —u) (2.16)
by equations (2.3} and (2.8)
I(Q) = M(u)+3D(Q ~u)—¢E (2.17)
where
E= f Cienvihix) dS (2.18)

u

E is bounded and is independent of ¢,,. Thus one has
[H{Q)+¢E = Ti(u) (2.19)

for all functions Q having piecewise continuous first partial derivatives and being equal to
u at the nodal points on §,,. Write T1(Q) in matrix form, ie.

Q) = 3D(Q)—q'T+ 4 (2.20)
where
D(Q) = q"Kq

A is a constant which depends on u, and is zero ifu, = O on §,. q is the column vector with

its components being the generalized coordinates g,,. K is symmetric and is called the stiff-

ness matrix. If {5 dS # 0, K is positive definite, otherwise K is positive semi-definite.
The minimum of TI{Q) is attained when q satisfies the equation

Kg=T 2.21)

At the minimum, one has
MQ)= —9'Kg+4 = ~3q"T+4 (2.22)
and evidently, since u* = Q when U, = gq;,,
Mw*) > Q) (2.23)

By equation {2.19),
Mu*)+eE > THQ)+¢E > {u) (2.24)
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Thus as ¢ tends to zero, the minimum of T1(Q) tends to the exact minimum of I'(u).

In order to show that the convergence of the approximate functional I(Q) to the exact
functional IT(u) actually implies the mean square convergence of the approximate solution
Q itself to the exact solution u, i.e.

'f u—0PdvV-0 (2.25)
|4

as ¢ tends to zero, we would first consider the case that {, dS # 0. In this case the solution
u of equation (2.1) is unique and the stiffness matrix is positive definite. Let us consider
the free vibration of the elastic body V with the density per unit volume to be unity, F;, = 0
in V,u, =0o0n S, and (T)), = O on §,. We see that the lowest eigenvalue, say 4, is positive
and any continuous vector function v # Qin V withv = 0 on S, will satisfy

D(v) > lj @*dV. (2.26)

14

Let Q be the function defined in equation (2.12) with its associated q satisfies equation (2.21).
Let f'be a continuous function in Vand equal to & on S,. Then, by equation (2.26)

Du—Q—¢f) ley(g—g—e[)zdl/. (2.27)

If fis so chosen that it vanishes everywhere except in the small neighborhood of S, with
volume of the order of ¢, it can easily be seen that

Du—Q—¢f) = Du—Q)+0()

j u—Q—¢f)’dV= j (u—Q)* dV+ O(e?). (2.28)
Vv '
Since

D(u—Q) = D(w)+D(Q)—2D(u. Q)

— D(w)+D(Q)—2 j ()50, dS

c

+ 2f FlQl dV_2f Cukleklvj(ul)o dS— 28f Cijkleklvihj dS
Vv

= —211(u)+211(Q)+ 2¢E
Therefore, by equation (2.24)
Du—Q)—-0 as ¢—-0

From equations (2.27) and (2.28), one concludes the mean square convergence of the
approximate solution u, i.e.

j‘(u—g)deao as ¢—0
v
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In the case of j 5.dS =0, ie. stress is prescribed all over the boundary, the stiffness
matrix is positive semidefinite. The solution for u or Q is unique only within a rigid body
motion. But if one imposes additional conditions of removing the rigid body motion, then
the proof of convergence is identical with the previous case.

In both cases, provided &V is sufficiently smooth, the rate of convergency of

j(g—g)de and D(u—Q)
v

are at least of the order &.

We have shown that if the interpolation functions f,, (1) are continuous in ¥+ 8V and
have piecewise continuous first partial derivatives and (2) are able to approximate any
sufficiently smooth function up to order &* (see equation 2.11), the solution Q by the finite
element analysis will tend to the exact solution in the sense of equation (2.25). The first
condition is obviously also a necessary condition. If the approximate function Q is only
piecewise continuous, say, Q has a finite jump across the boundary of a tetrahedron in V,
then its first partial derivatives have an infinite jump over there; the square of such an
infinite jump is not integrable, i.e. the strain energy 1D(Q) corresponding to such dis-
placement Q is not defined at all. The total strain energy of the body is then not equal to
the sum of the strain energy of each individual element. Using the latter to represent D(Q)
for minimization to obtain the approximate solution is meaningless. The second condition
is evidently not necessary. In fact, what we have used is equation (2.24). If the interpolation
functions can approximate closely the given u, on S, and the approximate function Q
satisfies equation (2.24) as ¢ tends to zero, then all the arguments used in this proof will
follow.

3. PLATES AND SHELLS

In the linearized theory of plates, the inplane displacements and outplane displacements
are decoupled. They can be treated separately. For the inplane displacement, the proof of
convergence is exactly the same as that in the last section, except that here the region being
considered is a plane. Therefore we only have to use triangular elements instead of tetrahed-
rons. We shall not consider it again. For the outplane displacement, the situation is a
little different, because we have to deal with bending energy in the construction of the
finite element equation. The bending energy of the plate involves second partial derivatives
of the outplane displacement w. We may expect the continuity alone for the approximate
function will not be sufficient. If the first partial derivative has a discontinuity at a certain
point, then the second partial derivative has an infinite jump over there, and the bending
energy of the plate is not defined at all. Therefore as was pointed out by Pian [7] the conti-
nuity of the first partial derivatives is a necessary condition for the assumed outplane dis-
placement.

For the outplane displacement of a plate, one has to find w, which satisfies the equilib-
rium equation

Pmy, 0 Ow
p— w_._.naﬂ [
0x,0x5  0x, " 0xg

+q(x)w = p(x,) 3.1
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in S and the appropriate boundary conditions on 5. In the expression,
*w

My = Cufu&—__axa oxq

and n,, are stress couples and initial stress resultants respectively. Here cartesian co-
ordinates are used and repeated indices indicate summation from one to two. For simplicity,
we shall consider only simply supported boundary conditions, i

W = w, (32)
maﬁvav;g = MQ (33)

where v, is the direction cosine of the normal of 88.
Let the functional D{w. ) and D{w) be defined by

2.0 A% 5
D(w, ) = j [c Cw GV, +q(3g)w¢]ds (3.4)
h

——— n e —
0 ax,0x, 0%, 0%y OX, axg

Diw) = Di{w, )

Then the solution w of equations (3.1) to (3.3) minimizes the potential energy
g ¢
{¢) = :D(p)— | ppdS— | My——dI (3.5
s oy O

over all admissible functions ¢ which are continuous, satisfy the rigid boundary condition
(3.2) and have piecewise continuous second partial derivatives in S. If w is the solution of
equations {3.1) to (3.3)

D(w, ) = f p dS+ MO% di+ j B(wyy dl (3.6)
s o5 on 28

where
@ ot | [omy, 6w)
B(W) = é—i [maﬂvlgé‘;;i}"“ <——ax§ ‘“NGB'&T;’ Va

for all admissible 4. In particular, setting ¢ = w and substituting into equation {3.5), one
gets

IM{w) = —4D(w)— j B(w)w, dl 3.7
o8

which is the minimum of IT(¢) for all admissible ¢.

In the proof of the convergence of the finite element method we first subdivide the
region § into small nonoverlapping triangles or quadrilaterals with areas of order £2. To
each vertex of the polygons, say at point P, we assign a subregion S, which comprises all
the adjacent polygons containing point P. Let w(P} and w,(P} denote the values of the
function w and its first partial derivative with respect to x,, respectively, at point P. Let
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the functions fp(x,, X;), gp X1, X2), (@ = 1, 2) be so defined that

a 08 s
fo = a{:’ = gpy = ég; =0 (« = 1,2) on dSp (3.8)
d
fo=SE=1 atp (39)
o 0
6{: =Er_0 @w#p  ap (3.10)
a B

both fp and gp,(x = 1, 2) vanish outside Sp. The functions f, and gp, so defined are called
the interpolation functions.
For the present problem, if

w = w¥x)+0(&’) in S (3.11)

where

2
wr =3 [W(P)fﬁ Y wa(P)gpa} (3.12)
P

a=1

for all sufficiently smooth functions w, then the proof of the convergence of the finite element
solution to the exact solution are similar to that in the last section. We shall just sketch
the step and indicate the results. Evidently

[I(w*) - TI(w)
as ¢ —» 0. The solution of the finite element method is obtained by minimizing
HI(F)
where

2
F=}% |:q(P)fp+ ) qa(P)gPa] (3.13)
4 1

a=

with respect to all g(P) and g¢,(P) subject to the condition that g(P) = w{P) for P € 8S. The
end result is

HINF)—I1(w)] = Dw—F)+0(e*) > /lJ (w—F¥dS+0(*) > 0 {3.14)
S

while
IH(F)—TI(w) - 0

as ¢ — 0.

In the case of shells, the inplane and outplane displacements are in general coupled.
Thus we have to consider them simultaneously in the potential energy of the shell. The
argument used in the convergence proof is identically the same. We shall not repeat the
proof.
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Clough and Tocher [8] have suggested a procedure for constructing a displacement
function to be used in the derivation of the stiffness matrix of a triangular plate element in
bending. Let us show that their scheme does lead to an interpolation function that satisfies
equations (3.8)(3.12). Consider a typical triangle APQR which comprises three sub-
triangles, A4, AB, and AC as shown in Fig. 3. Let

W, = a;+a;x; +a3xXy+ ... +09X X2 +0a,0X3 (3.15)

be a polynomial of degree three defined in AA. To determine the ten a’s, W, and its first

Q

’
X

F1G. 3. Triangular element used in plate and shell problems.

partial derivatives are required to equal to that of w at the vertices of AA. So far only nine
conditions are imposed on the a’s. Let us consider a local orthogonal coordinate x', y’
for A A as shown in Fig. 3. Thus by requiring that 6W,/0y’ is only a linear function of x" on
the x’-axis, the a’s of equations (3.15) for W, are uniquely determined in terms of the values
of w and its partial derivatives at the vertices of triangle 4. Write W, in a slightly different
form as

W, = w(P)op(x,, X2)+W(Q)(P6(X1, x2)+W(T)e7(x1,X3) (3.16)
5 .

+ Wl PYp2a(x1, X2)+ .. +W(T)ofs(xy, X3)]
=1

a

where the functions ¢ are independent of the value of w. Similarly Wy and W, are defined
in the corresponding subtriangles AB and AC. For a sufficiently smooth function w, it is
easy to see

w= W, +E (x,,x;) inAA
= WB+83EB(XI,X2) iIl AB (3.17)
= We+&Ed(x;,x,) in AC

where E ,, Eg and E are functions of the same order as w.
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Let 8/6nyx denote the normal derivative across the line segment MN. Then

for all values of w(P), w(Q), w(R), w(T), w,(P),

PN TonG and T. H. H. Pian

W, oW,
,(z,:,‘, =_2 atQand T
fngr  Ongr
oW, ?
B _ % atRand T
Ongy  Ongr
W jnl
0 C:—-UWA atPand T
Onpr  Onpr

(3.18)

(3.19)

(3.20)

... w,(T). In the scheme by Clough and Tocher

the displacement functions which are denoted by W%, W3 and W¥ are independent of
w(T), w{T) and w,(7T). Indeed, they are obtained by replacing w{T), w(T) and w,(T) in
the expressions of W, , W, and W, by 6. 8, and 0, respectively. 8, 0, , and 6, are defined by
requiring that equations (3.18) and {(3.19) are also satisfied at points 7}, and T;, and T
of QT, RT, and PT respectively. Since 0W3*/én . .. are only quadratic equations, equations
{3.18)(3.20) are satisfied on QT, RT, and PT for W*, W and W}, the values of 0, 8,, 8, are
independent of the choice of 7}, T, , and 7.
By equations (3.16)and (3.17), one has

[0 —w(T)]

[0—w(T)]

[0—w(T)]

Evidently

(oot Ooh |
_5HQT 6”@}"_

Kz
| Ongy  Ongr

(29§ gt |

LOnpr Onpr |

Or, in turn, one has

Write W¥

in the form

2
+ Z [ch - Wa(T)]
a=1

2
+ Z [Qa - Wa(T)]
a=1

+

&

_5nQT anQT ]

008, 0¢%, ]
| Ongy  Ongr |

(005, 291, |

(00t 0%, |

2
[90: - wa(T)]
=1

0—-wT) =
8,—w(T) =

*
W,—Wi=

WB""
We—WE

®
3=

| Onpr  Onpr |

0=

o) x=1,2)
0 inAA
0(=3) in AB
0(e?) in AC

Wi = w(P)f3(x1, X3)+W(Q) f5(x1, X5)

—_

[0E, OEg
[Ongr  Ongy |
[0Ey  OE. ]
_(mRT Ongr |

(0E. 0K, |

[Onpy  Onpr

2
+ Z [Wa(P)gf’a(xx % x2)+ Wa(Q)géa(xl * x2)]

a=1

at Ty

at T, {3.21)

at T,

(3.22)

{3.23)

(3.24)
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and write W% and W% in the similar form. Then one can define the interpolation functions
f, and gp, by letting

fp = f(xy,X2) in AA
= [B(xy, %) in AB
= f5(x1,%2) in AC
gps = 8halX1,X2)  inAd
= gp{x1, X2) in AB
= ghx;. %)) In AC

of the triangle PQR. Similarly fp and gp, are defined in other triangles of Sp. Both f, and
gp, are set to be zero outside Sp. It can be easily seen that the so defined interpolation
functions fp and gp, have continuous first partial derivatives for all points in S and satisfy
equations {3.8)(3.12).

In the case of rectangular elements, one can easily show the corrected version of the
interpolation functions constructed in [9] also satisfy equation (3.8}(3.12). Using that kind
of interpolation function in the finite element scheme will also guarantee the convergence
of its solution. In the case of axial symmetric structures, e.g. shells of revolution, or circular
plates, the numerical scheme introduced in [10] and [11] will also converge to the exact
solution.

4. EVALUATION OF STIFFNESS MATRIX

There are many ways to construct the interpolation functions that satisfy the sufficient
conditions for the mean square convergence. The question is for a given subdividing region
which interpolation functions will give the better approximation. Khanna [12] has postul-
ated that of two element stiffness matrices the one which gives the greater strain energy
under all load vectors will give consistently better results in the numerical analysis. He
also pointed out that the comparison of the strain energy difference can be accompanied by
examining the inverse difference [k; ' —k; '], where Kk, and k, are the element stiffness
matrices. Let us re-examine this problem.

As we know from the minimum potential energy theorem, for all the functions v which
satisfy the restrained boundary condition and have piecewise continuous first partial
derivatives (in the case of plate or shell, the normal displacement must have piecewise
continuous second partial derivatives), the exact solution corresponding to the minimum
of the potential energy providing the strain energy of the elastic body is positive definite.

Let U/’s be different approximate solutions with its associated stiffness matrices K;
which are obtained based on continuous displacements at the interelement boundary. Then

KU, =T, @1
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(For the problem with only stress prescribed over the boundary, K; denotes the modified
matrix so that K, is nonsingular.) By equations (2.27) and (2.28)

[ wi-wrav< o, -w+oen
’ (4.2)

2
= SV~ T(w)] + 0(e)]

with 4 > 0. In the case of no body force and no external force acting in the interior of the
region considered, T, depends only on the interpolation function over the boundary. The
term O(g) in equation (4.2) depends only on the interpolation functions over the boundary
where restrained boundary conditions are prescribed ; and if the restrained conditions are
homogeneous, the term O(e) is identically zero. If the bound of

is used as a criterion to justify the approximations, of all the approximations for a problem
with homogeneous restrained boundary conditions, or of all those approximations having
the same interpolation functions over the restrained boundary, the approximation with
smaller TI(U,) is the better. By equations (4.1) and (2.22)

I(U,) = U/K,U,~UIT;+ 4
- 4.3)

= —IUTK,U;+4 = —JUIT,+ 4
Thus one may say the larger strain energy U.K,U, is the better.

If all the approximations have the same interpolation functions over the entire boundary,
and no load is applied in the interior of the region, one has

T,=T
equation (4.3) becomes
) = —3T'K; 'T+4 4.4)
Take i = 1 and 2, one has
U )-TIU,) = ;T7K; ' =K T (4.5)

Thus if K; ! —K; ! is positive definite or semidefinite
u,) = T ) (4.6)
In fact K; ' —K; ! is symmetric and positive definite or semidefinite only if K, — K, is

so. For symmetric matrices K, and K,, it is obvious that if K, —K, is symmetric, so is
K;'—K{LIf

xX'K,-K)x >0
for all x # 0, then
xT(K, —K,)x > CxTK,x 4.7
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where C is nonnegative and is equal to the ratio of the smallest eigenvalue of K, ~K, to
the largest eigenvalue of K, . Equation (4.7) implies that all the eigenvalues 4 of the equation

VI(K,—K,) = uV'K, (4.8)
is nonnegative. If V satisfies equation (4.8), one has
VIK,K; ' 1) = uVT
or
K K;'—DV = uV
or

(K5 '=K7 "WV = uK{'v (4.9)

Therefore we may say that all the eigenvalues of equation (4.9) are nonnegative. By equations
{4.7}-(4.9), one concludes that

xTK; 'K Hx = CxTK[ 'x (4.10)

is nonnegative. In fact, if K, —K, is positive definite, C is positive, i.e. K; ' K[ ! is also
positive definite. Since (K, !)™! = K,, the properties of K; ' —K; ! will imply those of
K, —K,. Thus one may justify which of the approximations is better by simply comparing
their stiffness matrices. Of course, if K; — K ; is indefinite, one cannot say anything in general.
The result above, strictly speaking, can only apply to compare those approximations
which have the same T (see equation 4.1). But if the size of the elements is sufficiently small,
the difference in T for different approximations is small, and we may still use the properties
of stiffness matrices as a crude justification.
It is easy to see that
UMK, -K)U= Y u'(k;~k,u 4.11)

all
elements

k;, called the elemental stiffness matrix, is the stiffness matrix of a single element of the body
associated with K;. k; is symmetric and in general positive semidefinite. However, there
is at least one elemental matrix which is positive definite, e.g. the elemental matrices of the
elements adjacent to the rigid boundary. In the case stress prescribed problem, some rows
and columns of some elemental stiffness matrices are removed to make the stiffness of the
body to be nonsingular, some of those elemental matrices are then positive definite. u is a
column vector with components to be the generalized coordinates of that particular
element. Evidently, if k, —k, of all the elements is positive semidefinite, then K, ~ K, is
positive semidefinite. This would be a very useful observation. If, for a problem, the inter-
polation functions, which satisfy the displacement compatibility at the interelement
boundaries, are the same for all elements, one need only to examine one single elemental
stiffness matrix instead of handling the larger stiffness matrix of the whole body. It appears
that only in this restricted case can one apply Khanna’s criterion for evaluating the finite
element methods.

Special attention must be taken that the above proof is based on the minimum potential
energy theorem. In the case that the stiffness matrix is not derived by using assumed dis-
placement functions [7, 13], the functional used in the construction of the stiffness matrix
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is no longer positive definite [14]. Then the strain energy obtained from the approximate
method can be either larger or smaller than that of the exact solution. Therefore, the above
criteria can no longer be applied.

5. CONCLUSION

The sufficient condition for the finite element method to be convergent is established.
The procedure used can be extended to derive higher order accurate approximations. All
our discussions, so far, on finite element methods are restricted to the displacement model.
Similar procedure can be extended to the so-called equilibrium model by the use of the
complementary energy. The use of an equilibrium model will provide an upper bound to
the strain energy. From the upper and lower bounds of the strain energy probably more
can be said about the real state of convergence of the solution. In the case of a mixed
model, e.g. Pian’s method [7. 13], and those methods using Reissner’s principle, the func-
tional is no longer positive definite, but the conditions for the convergence of the solution
can still be established [14].
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Résumé—Cet exposé présente un développement théorique pour montrer les conditions suffisantes qui assureront
que I’analyse du déplacement d’un élément limité converge vers les solutions de déplacement exactes lorsque la
taille des éléments est progressivement réduite. L’ordre d’une telle convergence est aussi évaluée. Le développe-
ment est relatif au probléme d’élasticité a trois dimensions et au probléme de la flexion des plaques. Une étude
est faite pour déterminer les moyens possibles d’évaluer les avantages de différentes matrices de rigidité a étre
utilisées dans I’analyse de ’élément limité.

Zusammenfassung—Diese Arbeit gibt eine theoretische Entwicklung die die geniigenden Bedingungen anzeigt,
die eine Analyse in endlichen Verschiebungselementen zu genauen Verschiebungen konvergieren wenn die
Elementen grossen dauernd abnehmen. Die Konvergierungs-Ordnung wird auch geschitzt. Die Entwicklung
ist im Zusammenhang mit dem dreidimensionalen Elastizititsproblem und mit dem Plattenbiegungsproblem,
Eine Untersuchung der Bestimmungsmoglichkeiten, die verschiedenem Steifigkeitsmatrtzen die in der endlichen
Analyse verwendet werden sollen wird auch unternommen.

Ab6ecrpakT—B HacTosme#r pafoTe maeTcs TeopeTHHYECKMil BBIBOA MUl yKa3aHMs JOCTATOYHBIX YCIOBHM,
KOTOpBIE 06ECEYNBAIOT CXOAUMOCTD PacyeTa NMEePeMELICHHH KOHEYHOTO 3JIEMEHTA CO CTPOTMMHM peLIeH-
HUAMM B IEPEMELICHUAX B CIyyae, KOTAAa pa3sMep 3JIEMEHTOB NMPOIPECCHBHO YMeHpIuaeTcs. IIpuBonurcs
TaKXe OUEHKY Takoil CXOOMMOCTH. BEIBOM CBA3aH 3 3aaaveidl TpEXMEpHOM TEOPHH YNPYTOCTH M C 3ajavei
u3rnba nnacTHHkyU. JlenaeTcs NonbiTKa, Lefbio KOTOPO#H ABAAETCA YKa3aHME BO3SMOXHBIX 3HAYECHHA OLEHKH
JIOCTOMHCTB MaTpPHII Pa3HbIX XECTKOCTEH. DTH MaTPHLbl HCTIOJIB3YIOTCSA NIPH PACYETE KOHEMHOTO 3NIEMEHTA.



